Joint Multi-Fiber NODDI Parameter Estimation and Tractography Using the Unscented Information Filter
نویسندگان
چکیده
Tracing white matter fiber bundles is an integral part of analyzing brain connectivity. An accurate estimate of the underlying tissue parameters is also paramount in several neuroscience applications. In this work, we propose to use a joint fiber model estimation and tractography algorithm that uses the NODDI (neurite orientation dispersion diffusion imaging) model to estimate fiber orientation dispersion consistently and smoothly along the fiber tracts along with estimating the intracellular and extracellular volume fractions from the diffusion signal. While the NODDI model has been used in earlier works to estimate the microstructural parameters at each voxel independently, for the first time, we propose to integrate it into a tractography framework. We extend this framework to estimate the NODDI parameters for two crossing fibers, which is imperative to trace fiber bundles through crossings as well as to estimate the microstructural parameters for each fiber bundle separately. We propose to use the unscented information filter (UIF) to accurately estimate the model parameters and perform tractography. The proposed approach has significant computational performance improvements as well as numerical robustness over the unscented Kalman filter (UKF). Our method not only estimates the confidence in the estimated parameters via the covariance matrix, but also provides the Fisher-information matrix of the state variables (model parameters), which can be quite useful to measure model complexity. Results from in-vivo human brain data sets demonstrate the ability of our algorithm to trace through crossing fiber regions, while estimating orientation dispersion and other biophysical model parameters in a consistent manner along the tracts.
منابع مشابه
Neural Tractography Using an Unscented Kalman Filter
We describe a technique to simultaneously estimate a local neural fiber model and trace out its path. Existing techniques estimate the local fiber orientation at each voxel independently so there is no running knowledge of confidence in the estimated fiber model. We formulate fiber tracking as recursive estimation: at each step of tracing the fiber, the current estimate is guided by the previou...
متن کاملPerformance of unscented Kalman filter tractography in edema: Analysis of the two-tensor model
Diffusion MRI tractography is increasingly used in pre-operative neurosurgical planning to visualize critical fiber tracts. However, a major challenge for conventional tractography, especially in patients with brain tumors, is tracing fiber tracts that are affected by vasogenic edema, which increases water content in the tissue and lowers diffusion anisotropy. One strategy for improving fiber t...
متن کاملAdaptive High-Gain observer for joint state and parameter estimation: A comparison to Extended and Unscented Kalman filter
An adaptive High-Gain observer (AHG) as well as an Extended (EKF) and Unscented Kalman filter (UKF) are implemented for joint state and parameter estimation of a novel multi-axial electromagnetically actuated punch. These observers are compared in terms of convergence and response time to erroneous parameter and state initialization, as well as parameter modifications during operation. The AHG ...
متن کاملFalse Positive Detection using Filtered Tractography
Introduction: Diffusion-weighted MR imaging allows for non-invasive investigation of the neural architecture of the brain. In the past decade, several algorithms have been proposed to trace the fiber bundles using a variety of fiber model representations. The simplest and the most widely used model is the diffusion tensor model, with tracts generated by following the principal diffusion directi...
متن کاملRotated Unscented Kalman Filter for Two State Nonlinear Systems
In the several past years, Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) havebecame basic algorithm for state-variables and parameters estimation of discrete nonlinear systems.The UKF has consistently outperformed for estimation. Sometimes least estimation error doesn't yieldwith UKF for the most nonlinear systems. In this paper, we use a new approach for a two variablestate no...
متن کامل